KeyChk - Checking Keys From Your Program

KeyChk Overview

KeyChk is a function which allows your program to check the presence and status of a Key. Your program has
complete control over when KeyChk is called and what action is taken if the Key check succeeds or fails.

The KeyChk function is supplied in an EverKey DLL. Win32 programs should use the KeyChk.dlI file and
programs built for the x64 platform should use the KeyChk64.dll file.

KeyChk.dll supports both Rockey4 and Rockey4ND Keys. KeyChk64.dll only supports the newer
Rockey4ND Keys.

To simplify the text, this manual refers to both DLLs as the KeyChk DLL.

Information is exchanged between your program and KeyChk via a Secure Communication Block (SCB) data
area that resides within your program. Before your program calls the KeyChk function, it must set up an SCB
area which tells KeyChk what to do. Once KeyChk is called, it performs a check for your Key, reports the
results in your SCB area, sets an Error Code and returns control to your program.

The KeyChk function only requires one parameter, a pointer to the SCB. The returned value of the KeyChk
function itself is always zero (0) and does not need to be checked. The results of the Key check are returned
in the Error Code fields of the SCB.

When To Call the KeyChk Function

The best time to check for the presence of your Key is when your program is NOT in the middle of doing
something else. The reason for this is that you have to allow for the possibility of the Key not being present. If
the Key is not present, then you should inform the Customer and provide the option of Retry or Cancel without
having to deal with anything else.

Usually, a good time to check for the Key is when your program first starts executing before it has opened any
files or databases. Another good time to call KeyChk is when the User starts a major program function, such
as printing a report.

How often should you call KeyChk? Try to make this a realistic time limit to protect your Product without being
overly paranoid. Calling KeyChk when the program starts up is fine for most programs. If your program runs
all day, you might want to verify the presence of the Key every 15 minutes or between major operations. If
your program performs a lot of different functions, then you might want to check for the presence of the Key
before starting any of those functions.

Adding a KeyChk Call To Your Program

To show how to use KeyChk, we have provided the complete Source Code for a number of Example programs
in various languages. The easiest way to add one or more KeyChk calls to your program is to copy and paste
from our Example Source Code and then re-build your program.

All our Example Source Code uses a Product-ID of “Examples” and a Product PIN of '375391873". Of
course, your Product-ID and Product PIN will be different and you will need to update your Source Code with
your unique values. Both of these fields are shown on the Build Keys screen of the KeyBuild program. Be
sure to load the Options File for your Product because each Options File can have a different Product-ID
and Product PIN.

Once a KeyChk call has been added to your program, it can be distributed in a compressed format.

EverKey Help 39 of 79 KeyChk - Checking Keys From Your Program

KeyChk File Location And Name

If your application uses 32-bit programs, your install process should copy the KeyChk.dll file to your
Product’s program folder. Do NOT copy it to the Windows "System" or "System32" folder.

If your application uses 64-bit programs, your install process should copy the KeyChk64.dll file to your
Product’s program folder.

For more security, you may want to rename the KeyChk DLL file to something that will blend in with the
names of the files that are included with your Product. This is allowed, but be sure to change the filename that
is referenced by your Source Code.

What KeyChk Cannot Do
By design, KeyChk is not allowed to do the following:

o Increase the Uses Limit. (KeyChk can only Decrease this Limit).
e Turn the Feature-Flags On or Off. (KeyChk can only Read these Flags).

Both of the above operations can only be done with the Renew program.

EverKey Help 40 of 79 KeyChk - Checking Keys From Your Program

KeyChk Calling Procedure

The following steps are used to perform a KeyChk function call from your Program:

Step 1 Define the Secure Communications Block (SCB).

Step 2 Initialize the required fields of the SCB. The fields that must be initialized are listed with the
description of the functions.

Step 3 Call the KeyChk function.

Step 4a If the Error Code field in the SCB is zero, the Key check was successful. This means that the Key
was found and was not expired. All the fields in the SCB will be available for display or other use.
Your program should continue as normal.

Step 4b If the Error Code field in the SCB is non-zero, the Key check failed. This means that your Key is

expired, invalid or NOT plugged into the computer. None of the fields in the SCB should be
considered valid, except the Error Code fields. Your program should take whatever action you feel
is necessary. This can range from an Error message to just shutting down. Some Companies allow
their Customers to run in “Demo” mode if a valid Key is not present.

NOTE: If the Key check fails, it is recommended that you display or log the Error Code, Error Status 1 and
Error Status 2 fields in a Hexadecimal format. If you need to consult our Support staff about the Error, they
will need this information.

EverKey Help

41 of 79 KeyChk - Checking Keys From Your Program

KeyChk Function Codes Summary

Here is a short description of each KeyChk function:

Function #1 | This function allows you to verify the presence of your Key based on the Product-ID, Product PIN and Serial
Number (optional).
If found, the following fields are returned from the Key:
» Serial Number (if not specified).
* Uses Limit.
+ Time Limit.
* Expire-Date.
+ User-Data.
* Lasered-ID.
* Feature-Flags.
* Registration Info (if supported by Key).
No fields in the Key are updated by this call.
If you have set a Time Limit and the Key's Timer has not yet been started, this function will start the Timer ticking.
Function #2 | Same as Function #1 except the Uses Limit is updated.
Function #3 | Same as Function #1 except the Uses Limit AND the User-Data are updated.
Be careful with this function! Whatever User-Data you provide in the SCB will overwrite the entire 16 bytes of
User-Data in the Key. If you want to preserve part of the User-Data in the Key, use Function #1 first to read the
existing User-Data, update the SCB with what needs to be changed and then use this function to write it back to
your Key.
Function #4 | The main purpose of this function is to allow for a very fast check for the presence of your Key.
If you want to frequently check for the presence of your Key without slowing down your program, you can first use
Function #1 to get the Lasered-ID of your Key. After that, you can use this function to ensure that your Key is still
plugged into the computer.
Nothing in the Key is updated and the only field returned is the Error Code which tells you if the Key was found.
Function #9 | As of EverKey, Version 6, this function is no longer needed. New programs should not use this function.

However, it will continue to be supported for existing programs.
It is the same as Function #1 except NOTHING in the Key is updated. This is a READ-ONLY function.

EverKey Help

42 of 79 KeyChk - Checking Keys From Your Program

KeyChk Function Codes Details
Here is the detailed description of KeyChk Function #1:

Function #1 | This function allows you to verify the presence of your Key based on the Product-ID, Product PIN and Serial
Number (optional).

If the Key is found, the following fields are returned:
» Serial Number (if not specified).
+ Uses Limit.
* Time Limit.
* Expire-Date.
* User-Data.
* Lasered-ID.
* Feature-Flags.
* Registration Info (if supported by Key).
No fields in the Key are updated by this call.
If the Key has a Time Limit and it's Timer has not yet started, this function will start the Timer ticking.

Before calling KeyChk setup the following SCB fields:

Error Code |6240 (hex)

It's a good programming practice to always set the Error Code to this value before calling KeyChk. If KeyChk
doesn't find your SCB, it can't set the Error Code, but it will already be set to the correct value and your program
will take the proper action.

Function 1
Code

SCB-ID |“Kc.6” (ASCIIZ)

Product-ID | Set this to your Product-ID shown on the Build Keys screen of the KeyBuild program.
This field is case sensitive.

PIN Set this to your Product PIN shown on the Build Keys screen of the KeyBuild program. Please note that you
CANNOT use the User-Data PIN here.
Product Normally, you will set this field to zero so the Key check will succeed as long as KeyChk finds a Key with your
Serial specific Product-ID and Product PIN.
Number

If you also want to verify that the Key present has a specific Product Serial Number, then set this field to the
specific Serial Number that you want to verify.

The remaining SCB fields will be ignored by KeyChk.

EverKey Help 43 of 79 KeyChk - Checking Keys From Your Program

Here is the detailed description of KeyChk Function #2:

Function #2

This function allows you to verify the presence of your Key based on the Product-ID, Product PIN and Serial
Number (optional).

Additionally, this function will update the Uses Limit based on the setting of this field when KeyChk is called (see
field details below).

If the Key is found, the following fields are returned:

» Serial Number (if not specified).

* Uses Limit (updated value).

* Time Limit.

* Expire-Date.

* User-Data.

* Lasered-ID.

* Feature-Flags.

* Registration Info (if supported by Key).
Except for the Uses Limit, no other fields in the Key are updated by this call.
If the Key has a Time Limit and it's Timer has not yet started, this function will start the Timer ticking.

Before calling

KeyChk setup the following SCB fields:

Error Code | 6240 (hex)
It's a good programming practice to always set the Error Code to this value before calling KeyChk. If KeyChk
doesn't find your SCB, it can't set the Error Code, but it will already be set to the correct value and your program
will take the proper action.
Function 2
Code
SCB-ID “Kc.6” (ASCIIZ)
Product-ID | Set this to your Product-ID shown on the Build Keys screen of the KeyBuild program.
This field is case sensitive.
PIN Set this to your Product PIN shown on the Build Keys screen of the KeyBuild program. Please note that you
CANNOT use the User-Data PIN here.
Product Normally, you will set this field to zero so the Key check will succeed as long as KeyChk finds a Key with your
Serial specific Product-ID and Product PIN.
Number If you also want to verify that the Key present has a specific Product Serial Number, then set this field to the
specific Serial Number that you want to verify.
Uses Limit | Set this field to zero if you do not wish to update the Uses Limit of the Key. Otherwise, set this field to a negative
or number equal to the number of “uses” that you wish to subtract from the Key's current Uses Limit. For example, to

Uses Update

take one “use” away, set this field to "-1" (negative one).

Please Note: KeyChk is not allowed to ADD to the current value of the Uses Limit. This can only be done with the
Renew program.

The remaining SCB fields will be ignored by KeyChk.

EverKey Help

44 of 79 KeyChk - Checking Keys From Your Program

Here is the detailed description of KeyChk Function #3:

Function #3

This function allows you to verify the presence of your Key based on the Product-ID, Product PIN and Serial
Number (optional).

Additionally, this function will update the Uses Limit and User-Data based on the setting of these fields when
KeyChk is called (see field details below).

If the Key is found, the following fields are returned:

» Serial Number (if not specified).

* Uses Limit (updated value).

* Time Limit.

* Expire-Date.

* User-Data (updated value).

* Lasered-ID.

* Feature-Flags.

* Registration Info (if supported by Key).
Except for the Uses Limit and User-Data, no other fields in the Key are updated by this call.
If the Key has a Time Limit and it's Timer has not yet started, this function will start the Timer ticking.

Be careful with this function! Whatever User-Data you provide in this call will overwrite the entire 16 bytes of User-
Data in the Key. If you want to preserve part of the User-Data in the Key, use Function #1 first to read the existing
User-Data, update the SCB with what needs to be changed and then use this function to write it back to your Key.

Before calling

KeyChk setup the following SCB fields:

Error Code | 6240 (hex)
It's a good programming practice to always set the Error Code to this value before calling KeyChk. If KeyChk
doesn't find your SCB, it can't set the Error Code, but it will already be set to the correct value and your program will
take the proper action.
Function 3
Code
SCB-ID “Kc.6” (ASCII)
Product-ID | Set this to your Product-ID shown on the Build Keys screen of the KeyBuild program.
This field is case sensitive.
PIN Set this to your Product PIN shown on the Build Keys screen of the KeyBuild program. Please note that you
CANNOT use the User-Data PIN here.
Product Normally, you will set this field to zero so the Key check will succeed as long as KeyChk finds a Key with your
Serial specific Product-ID and Product PIN.
Number If you also want to verify that the Key present has a specific Product Serial Number, then set this field to the
specific Serial Number that you want to verify.
Uses Limit | Set this field to zero if you do not wish to update the Uses Limit of the Key. Otherwise, set this field to a negative
or number equal to the number of “uses” that you wish to subtract from the Key's current Uses Limit. For example, to

Uses Update

take one “use” away, set this field to "-1" (negative one).

Please Note: KeyChk is not allowed to ADD to the current value of the Uses Limit. This can only be done with the
Renew program.

User-Data

Set this field to the 16 bytes of data that you want to store in the secure memory of your Key.

Be careful with this function! Whatever User-Data you provide here will overwrite the entire 16 bytes of User-Data
in the Key. If you want to preserve part of the User-Data in the Key, use Function #1 first to read the existing
User-Data, update the SCB with what needs to be changed and then use this function to write it back to your Key.

In EverKey Version 2, the last two bytes (16 bits) of this field was called the User-Data Flags.

The remaining SCB fields will be ignored by KeyChk.

EverKey Help

45 of 79 KeyChk - Checking Keys From Your Program

Here is the detailed description of KeyChk Function #4:

Function #4

This function allows you to verify the presence of your Key VERY QUICKLY based only on the Lasered-ID, which
is unique for every EverKey Key.

Since the purpose of this function is to perform the Key check as quickly as possible, it does not return any SCB
fields except Error Code, Error Status 1 and Error Status 2.

No fields in the Key are updated by this call.
If the Key has a Time Limit and it's Timer has not yet started, this function WILL NOT start the Timer ticking.

Before calling

KeyChk setup the following SCB fields:

Error Code | 6240 (hex)
It's a good programming practice to always set the Error Code to this value before calling KeyChk. If KeyChk
doesn't find your SCB, it can't set the Error Code, but it will already be set to the correct value and your program will
take the proper action.
Function 4
Code
SCB-ID “Kc.6” (ASCIIZ)
Lasered-ID

Set this field to the Lasered-ID of the Key that you want to be sure is still plugged into the computer.

The easiest way to get the Lasered-ID for your Key is to use Function #1 specifying your Product-ID and Product
PIN. As a successful result of that function, the Lasered-ID of your specific Key will be returned in the SCB. Save
that returned value and from then on, you can this function for a very fast Key check.

The remaining SCB fields will be ignored by KeyChk.

EverKey Help

46 of 79 KeyChk - Checking Keys From Your Program

KeyChk SCB Layout

This section describes the Secure Communication Block (SCB) data area that is used to exchange information

between your program and the KeyChk DLL.

Since the SCB resides within your program, the layout must be defined (declared) in your program so
information can be passed to and from the KeyChk DLL. The size of your SCB definition MUST be 512 bytes.

Here is the field-by-field layout of the SCB:

Field

Type

Offset
(decimal)

Size
(bytes)

Description

Error Code

Unsigned Word

0

2

This is the Main KeyChk Error Code field. It should be set to
6240 (hex) before calling KeyChk. It will be returned as Zero if
your Key was found and not Expired.

Error Status 1

Unsigned Word

This field is only used if the Error Code field is returned non-Zero.
It contains additional information about the Error.

Error Status 2

Unsigned Word

This field is only used if the Error Code field is returned non-Zero.
It contains additional information about the Error.

Function Code

Unsigned Byte

This field tells KeyChk what you want it to do. It should be set
prior to calling KeyChk. Each function is described in detail later
in this chapter.

SCB-ID

String (ASCIIZ)

This is a "Signature" field used by KeyChk to verify that this block
of memory is the SCB. Set it to “Kc.6” before calling KeyChk.

For backward compatibility, if this field is set to “..?Z”, KeyChk will
assume that your program is still using an 80-byte SCB as defined
in EverKey v2. This allows old programs to use the newest
version of the KeyChk DLL with NO changes.

Product-ID

String
(UTF-8 Unicode)

12

Before calling KeyChk, set this field to the Product-ID of the Key
that you want to find and check. This is shown on the Build Keys
panel of the KeyBuild program. This field is case sensitive.

Reserved

Unsigned Byte

21

Reserved for future use.

Feature-Flags

Unsigned Word

22

These are 16 single-bit flags that are stored securely in the
memory of the Key. If the bit is set to 1, the flag is On.

The least significant bit represents Feature-Flag #1 and the most
significant bit represents Feature-Flag #16.

These flags can be set by KeyBuild when the Key is built.

Later, once the Key is in the Customer's possession, the Renew
program may be used to turn On additional Feature-Flags. Also,
Renew can turn Off any of the Feature-Flags.

Product Serial
Number

Unsigned DWord

24

Before calling KeyChk, set this field to the Product Serial
Number of the Key that you want to find and check.

Normally, you will set this field to Zero so the Key check will
succeed as long as KeyChk finds a Key with your specific
Product-ID and Product PIN.

If you also want to verify that the Key present has a specific
Product Serial Number, then set this field to the specific Serial
Number that you want to verify.

Product PIN

Unsigned DWord

28

Before calling KeyChk, set this field to the Product PIN of the
Key that you want to find and check. This is shown on the Build
Keys panel of the KeyBuild program. Please note that you
CANNOT use the User-Data PIN here.

EverKey Help

47 of 79

KeyChk - Checking Keys From Your Program

SCB field Layout (cont.)

Field

Type

Offset
(decimal)

Size
(bytes)

Description

Uses Limit
or
Uses Update

Signed Word

32

The current Uses Limit of the Key will always be returned in this
field. This is the number of uses left until the Key expires. This
value is originally set from the Uses Limit option of the KeyBuild
program. If the Key does not have an Uses Limit, this field will
be returned as -1 (negative one) which means “Unlimited”.

When using KeyChk Function 2 or 3, this field can be set to a
negative number equal to the number of “uses” that you wish to
subtract from the Key's current Uses Limit. For example, to take
one “use” away, set this field to "-1" (negative one) and then call
KeyChk Function 2.

Time Limit

Unsigned Word

34

Number of days left until the Key expires. This value is originally
set from the Time Limit option of the KeyBuild program. If the
Key does not have a Time Limit, this field will be returned from
KeyChk as FFFF (hex) which means “Unlimited”.

Please note that if the Key has an Expire-Date, this value will be
Zero (0) if there are less than 24 hours until the Key expires.
Once the Key does expire, the Error Code will be set to 0x6143.

ED_ASCII

String (ASCIIZ)

36

Note: This field is kept here for backward compatibility with
programs that still use the Version 2 SCB layout.

It's recommended that all new programs use the Expire-Date
field, located at offset 272. That field uses Unicode characters and
formats the date using the Local Region Settings.

This field is the Expiration date of the Key in ASCIIZ format. This
date string will always be 8 ASCII characters with a format of
MM/DD/YY.

This date is originally set from the Time Limit option of the
KeyBuild program.

If the Key does not have a Time Limit, this field will be set to "No
Limit".

User-Data

Unsigned Byte

45

16

You can use this area to securely store anything you like in the
Key. For example, some Customers store a Password in the Key
so it is not embedded in their program.

This data is originally set from the User-Data option of the
KeyBuild program.

In EverKey Version 2, the last two bytes (16 bits) were called the
User-Data Flags.

Reserved

Unsigned Byte

61

Reserved for future use.

Lasered-ID

Unsigned Byte

67

Permanent Serial Number of the Key. This field cannot be
reprogrammed and is guaranteed unique for each EverKey Key.

The 1% Byte of this field indicates the Key Type:
E1 (hex): Rockey4 Key.
E2 (hex): Rockey4ND Key.

Renew
Used-Count

Unsigned Byte

75

This is how many times the Key has been successfully updated by
the Renew program.

Reserved

Unsigned Byte

76

Reserved for future use.

EverKey Help

48 of 79

KeyChk - Checking Keys From Your Program

SCB field Layout (cont.)

Field Type Offset Size Description
(decimal) | (bytes)
Registered String 80 64 Name of the registered Owner of your Product Key.
Name (UTF-16 Unicode) This field is set from the Registration Information Name option
of KeyBuild and cannot be changed by KeyChk or Renew.
Registered String 144 64 Company Name of the registered Owner of your Product Key.
Company (UTF-16 Unicode) This field is set from the Registration Information Company
option of KeyBuild and cannot be changed by KeyChk or
Renew.
Registered String 208 64 Use this field for any Other information about the registered
Other (UTF-16 Unicode) Owngr of your Product Key. For example, Phone Number or
Info Email Address.
This field is set from the Registration Information Other option
of KeyBuild and cannot be changed by KeyChk or Renew.
Expire-Date String 272 32 Expiration date of the Key. This date is originally set from the Time
(UTF-16 Unicode) Limit option of the KeyBuild program.
The format of the Expire-Date field will always use the Local
Region Settings.
If the Key does not have a Time Limit, this field will be set to "No
Limit".
Expire-Time String 304 32 Expiration time of the Key on it's last day of operation. This time is
(UTF-16 Unicode) originally set to the time that the Key was built by the KeyBuild
program.
The format of the Expire-Time field will always use the Local
Region Settings.
If the Key does not have a Time Limit, this field will be set to "No
Limit".
Reserved Unsigned Byte 336 176 | Reserved for future use.
EverKey Help 49 of 79 KeyChk - Checking Keys From Your Program

Upgrading From Version 2
The new KeyChk DLL has several improvements over the Kechk32.dll used in EverKey Version 2:

e Supports both Rockey4 and Rockey4ND Keys. Rockey4NDs require no Device Drivers, are about 4
times faster and have more memory so they can store Customer Registration Information.

e Returns the Expire-Date and Time in Unicode characters using the format dictated by the User's Local
Region Settings. This eliminates the need for your Program to reformat the data returned in the SCB.

e Returns the Renew-Used Count field.
e Returns the new Key fields for Feature-Flags and Registered Customer Name, Company and Other.
e Does not require Ibfs32.dll.

e |s backward compatible and can be used as a “drop-in” replacement for Kechk32.dll, usually requiring
“‘No Source Code Changes” or re-compiling.

In order to take full advantage of all the improvements in the new KeyChk.dll, you will need to make a few
changes to of your Product. Here's how you upgrade:

e Change your source code to call function “KeyChk” instead of “KECHK32".
e Change your source code to use “KeyChk.dlIl” instead of “Kechk32.dlII”.

e Update your source code definition of the SCB to be 512 bytes in size instead of 80 bytes. For a
complete description of the SCB and its field layout, refer to the “KeyChk SCB Layout” section of this
chapter.

e Change your source code to set the “SCB-ID” field to “Ke.6” instead of “..?2”.
e Replace the “Kechk32.dII” file with “KeyChk.dII”.
e Enjoy!

If you are not able to make source code changes to your Product programs, there's still a good chance you can
use the new KeyChk.dllI.

We have designed the new DLL as a “drop-in” replacement for Kechk32.dll. It is totally backward compatible,
having the same entry point, using the same calling convention and supporting the old SCB layout.

To use the new DLL with your existing Product program(s), simply rename the “KeyChk.dlI” file to
“Kechk32.dIlI” and copy it over the existing “Kechk32.dlI” file. That's it!

Of course, using the new DLL without making any source code changes means you will not be able to access
the new SCB fields. Even so, your Product programs WILL be able to use the newer and faster Rockey4ND
Keys.

EverKey Help 50 of 79 KeyChk - Checking Keys From Your Program

	KeyChk - Checking Keys From Your Program
	KeyChk Overview
	When To Call the KeyChk Function
	Adding a KeyChk Call To Your Program
	KeyChk File Location And Name
	What KeyChk Cannot Do
	KeyChk Calling Procedure
	KeyChk Function Codes Summary
	KeyChk Function Codes Details
	KeyChk SCB Layout
	Upgrading From Version 2

